Part Number Hot Search : 
STTH208U SH7085 CPQ130 111H601C 5H100 SH7085 2SK3321 30N3200
Product Description
Full Text Search
 

To Download GA150TD120U Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  3/20/98 GA150TD120U "half-bridge" igbt double int-a-pak features v ces = 1200 v v ce (on) typ. = 2.4v @v ge = 15v , i c = 150a parameter typ. max. units r q jc thermal resistance, junction-to-case - igbt 0.16 r q jc thermal resistance, junction-to-case - diode 0.20 c/w r q cs thermal resistance, case-to-sink - module 0.1 mounting torque, case-to-heatsink 4.0 n m mounting torque, case-to-terminal 1, 2 & 3 ? 3.0 weight of module 400 g thermal / mechanical characteristics absolute maximum ratings parameter max. units v ces collector-to-emitter voltage 1200 v i c @ t c = 25c continuous collector current 150 i cm pulsed collector current ? 300 a i lm peak switching current ? 300 i fm peak diode forward current 300 v ge gate-to-emitter voltage 20 v v isol rms isolation voltage, any terminal to case, t = 1 min 2500 p d @ t c = 25c maximum power dissipation 780 w p d @ t c = 85c maximum power dissipation 406 t j operating junction temperature range -40 to +150 c t stg storage temperature range -40 to +125 ? standard: optimized for minimum saturation voltage and operating frequencies up to 10khz ? very low conduction and switching losses ? hexfred ? antiparallel diodes with ultra- soft recovery ? industry standard package ? ul approved benefits ? increased operating efficiency ? direct mounting to heatsink ? performance optimized for power conversion: ups, smps, welding ? lower emi, requires less snubbing preliminary ? generation 4 igbt technology . www.irf.com 1 ultra-fast tm speed igbt pd - 5.067a
GA150TD120U 2 www.irf.com parameter min. typ. max. units conditions q g total gate charge (turn-on) 1139 1709 v cc = 400v, v ge = 15v q ge gate - emitter charge (turn-on) 192 288 nc i c = 171a q gc gate - collector charge (turn-on) 377 566 t j = 25c t d(on) turn-on delay time 414 r g1 = 15 w , r g2 = 0 w t r rise time 208 ns i c = 150a t d(off) turn-off delay time 552 v cc = 720v t f fall time 342 v ge = 15v e on turn-on switching energy 29 mj see fig.17 through fig.21 e off turn-off switching energy 32 e ts total switching energy 61 90 c ies input capacitance 25630 v ge = 0v c oes output capacitance 1139 pf v cc = 30v c res reverse transfer capacitance 221 ? = 1 mhz t rr diode reverse recovery time 186 ns i c = 150a i rr diode peak reversecurrent 133 a r g1 = 15 q rr diode recovery charge 12381 nc r g2 = 0 di (rec) m /dt diode peak rate of fall of recovery 2524 a/s v cc = 720v during t b di/dt=1260a/s parameter min. typ. max. units conditions v (br)ces collector-to-emitter breakdown voltage 1200 v ge = 0v, i c = 1ma v ce(on) collector-to-emitter voltage 2.4 2.9 v ge = 15v, i c = 150a 2.2 v v ge = 15v, i c = 150a, t j = 125c v ge(th) gate threshold voltage 3.0 6.0 i c = 1.75 ma d v ge(th) / d t j temperature coeff. of threshold voltage -11 mv/c v ce = v ge , i c = 1.75ma g fe forward transconductance ? 201 s v ce = 25v, i c = 150a i ces collector-to-emitter leaking current 2 ma v ge = 0v, v ce = 1200v 20 v ge = 0v, v ce = 1200v, t j = 125c v fm diode forward voltage - maximum 2.7 3.5 v i f = 150a, v ge = 0v 2.6 i f = 150a, v ge = 0v, t j = 125c i ges gate-to-emitter leakage current 500 na v ge = 20v dynamic characteristics - t j = 125c (unless otherwise specified) electrical characteristics @ t j = 25c (unless otherwise specified) details of note ? through ? are on the last page w w
GA150TD120U www.irf.com 3 fig. 1 - typical load current vs. frequency (load current = i rms of fundamental) fig. 2 - typical output characteristics fig. 3 - typical transfer characteristics 10 100 1000 1.0 1.5 2.0 2.5 3.0 v , collector-to-emitter voltage (v) i , collector-to-emitter current (a) ce c v = 15v 80s pulse width ge t = 25 c j t = 125 c j 0.1 1 10 100 0 20 40 60 80 100 120 f, frequency (khz) load current (a) for both: duty cycle: 50% t = 125c t = 90c gate drive as specified sink j power dissipation = w 60% of rated voltage i ideal diodes square wave: 134 load current ( a ) 1 10 100 1000 5 6 7 8 v , gate-to-emitter voltage (v) i , collector-to-emitter current (a) ge c v = 50v 5s pulse width cc t = 25 c j t = 125 c j 25v
GA150TD120U 4 www.irf.com fig. 6 - maximum effective transient thermal impedance, junction-to-case fig. 5 - typical collector-to-emitter voltage vs. junction temperature fig. 4 - maximum collector current vs. case temperature 25 50 75 100 125 150 0 50 100 150 200 t , case temperature ( c) maximum dc collector current(a) c -60 -40 -20 0 20 40 60 80 100 120 140 160 1.0 2.0 3.0 4.0 t , junction temperature ( c) v , collector-to-emitter voltage(v) j ce v = 15v 80 us pulse width ge i = a 300 c i = a 150 c i = a 75 c ( c ) 0.01 0.1 1 0.0001 0.001 0.01 0.1 1 10 100 1000 1 th jc d = 0.50 0.01 0.02 0.05 0.10 0.20 sing le pulse (thermal response) therm al r esponse (z ) t , rectan g ular pulse duration ( sec ) a p t 2 1 t dm notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c
GA150TD120U www.irf.com 5 fig. 7 - typical capacitance vs. collector-to-emitter voltage fig. 8 - typical gate charge vs. gate-to-emitter voltage fig. 9 - typical switching losses vs. gate resistance fig. 10 - typical switching losses vs. junction temperature r g , gate resistance ( w ) 1 10 100 0 10000 20000 30000 40000 50000 v , collector-to-emitter voltage (v) c, capacitance (pf) ce v c c c = = = = 0v, c c c f = 1mhz + c + c c shorted ge ies ge gc , ce res gc oes ce gc c ies c oes c res 0 200 400 600 800 1000 1200 0 5 10 15 20 q , total gate charge (nc) v , gate-to-emitter voltage (v) g ge v = 400v i = 171a cc c 0 10 20 30 40 50 50 60 70 80 90 100 r , gate resistance (ohm) total switching losses (mj) g v = 720v v = 15v t = 25 c i = 150a cc ge j c 15 w -60 -40 -20 0 20 40 60 80 100 120 140 160 10 100 1000 t , junction temperature ( c ) total switching losses (mj) j r = 15ohm v = 15v v = 960v g ge cc i = a 300 c i = a 150 c i = a 75 c r g1 =15 w ;r g2 = 0 w 125 720v ( w )
GA150TD120U 6 www.irf.com fig. 11 - typical switching losses vs. collector-to-emitter current fig. 12 - reverse bias soa fig. 13 - typical forward voltage drop vs. instantaneous forward current fig. 14 - typical stored charge vs. di f /dt i c , collector current ( a ) instantaneous forward current - i f ( a ) q rr - ( nc) 10 100 1000 1.0 2.0 3.0 4.0 fm forward volta g e d rop - v (v) t = 125c t = 25c j j 0 5000 10000 15000 20000 25000 500 800 1100 1400 1700 2000 f di /dt - (a/s) i = 300a i = 150a i = 75a f f f r j j v = 720v t = 125c t = 25c 0 100 200 300 400 0 200 400 600 800 1000 1200 1400 ce safe operating area v , collector-to-em itter volta g e ( v ) a v = 20v t = 125c v measured at terminal (peak volta g e) ge j ce 0 50 100 150 200 250 300 350 0 25 50 75 100 125 150 i , collector current (a) total switching losses (mj) c r = 15ohm t = 150 c v = 720v v = 15v g j cc ge r g1 =15 w ;r g2 = 0 w
GA150TD120U www.irf.com 7 fig. 15 - typical reverse recovery vs. di f /dt fig. 16 - typical recovery current vs. di f /dt trr - ( ns ) i rrm - ( a ) 0 100 200 300 400 500 800 1100 1400 1700 2000 f di /dt - (a/s) i = 300a i = 150a f f i = 75a f r j j v = 720v t = 125c t = 25c 0 50 100 150 200 250 500 800 1100 1400 1700 2000 f di /dt - (a /s) i = 300a f i = 150a f i = 75a f r j j v = 720v t = 125c t = 25c
GA150TD120U 8 www.irf.com t1 ic vce t1 t2 90% ic 10% vce td(off) tf ic 5% ic t1+5 s vce ic dt 90% vge +vge eoff = fig. 18 - test waveforms for circuit of fig. 17, defining e off , t d(off) , t f fig. 17 - test circuit for measurement of i lm , e on , e off(diode) , t rr , q rr , i rr , t d(on) , t r , t d(off) , t f fig. 19 - test waveforms for circuit of fig. 17, defining e on , t d(on) , t r fig. 20 - test waveforms for circuit of fig. 17, defining e rec , t rr , q rr , i rr vce ic dt vce ie dt t2 t1 5% vce ic ipk vcc 10% ic vce t1 t2 dut voltage and current gate voltage d.u.t. +vg 10% +vg 90% ic tr td(on) diode reverse recovery energy tx eon = erec = t4 t3 vd id dt t4 t3 diode recovery w aveforms ic vpk 10% vcc irr 10% irr vcc trr qrr = trr tx id dt vd ic dt vce ic dt ic dt vd ic dt vce ic dt ic dt
GA150TD120U www.irf.com 9 vg gate signal device under test current d.u.t. voltage in d.u.t. current in d1 t0 t1 t2 figure 22. pulsed collector current test circuit r l = 600v 4 x i c @25c 0 - 600v figure 21. macro waveforms for figure 17's test circuit d.u.t. v * c 50v l 1000v 6000f 100v figure 18. clamped inductive load test circuit
GA150TD120U 10 www.irf.com case outline double int-a-pak world headquarters: 233 kansas st., el segundo, california 90245, tel: (310) 322 3331 european headquarters: hurst green, oxted, surrey rh8 9bb, uk tel: ++ 44 1883 732020 ir canada: 7321 victoria park ave., suite 201, markham, ontario l3r 2z8, tel: (905) 475 1897 ir germany: saalburgstrasse 157, 61350 bad homburg tel: ++ 49 6172 96590 ir italy: via liguria 49, 10071 borgaro, torino tel: ++ 39 11 451 0111 ir far east: k&h bldg., 2f, 30-4 nishi-ikebukuro 3-chome, toshima-ku, tokyo japan 171 tel: 81 3 3983 0086 ir southeast asia: 315 outram road, #10-02 tan boon liat building, singapore 0316 tel: 65 221 8371 http://www.irf.com/ data and specifications subject to change without notice. 3/98 notes: ? repetitive rating; v ge = 20v, pulse width limited by max. junction temperature. ? see fig. 17 ? for screws m5x0.8 ? pulse width 80s; single shot. dimensions are shown in millimeters (inches)


▲Up To Search▲   

 
Price & Availability of GA150TD120U

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X